

Chassis • Backplanes • Integrated Systems

Solving Thermal Challenges in the "COTS, but" World

Helping Our Customers Achieve Their Mission

www.lcrembeddedsystems.com

VPX: A Chassis Manufacturer's Perspective

LCR Embedded Systems:

Embedded systems design and manufacturer specializing in *standards-based custom designs* for the Mil-Aero market

What is "COTS, but"?

- Standards-based custom designs = "COTS, but"
 - Customer want the reliability, scheduling, and cost benefits of COTS, but
 - They also want a system tailored to their exact, unique needs.

VPX Market: Strong and Growing

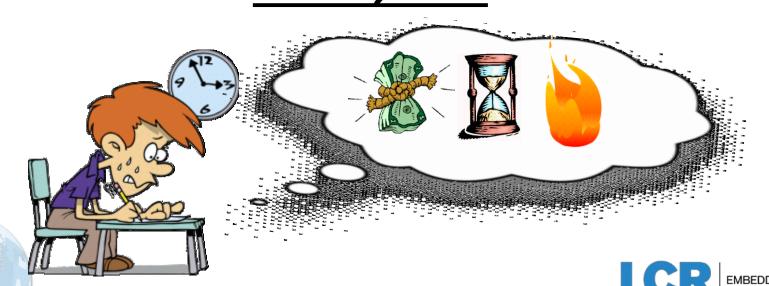
VPX is proving to be the current choice for many new defense programs.

The vast majority of new designs are in the 3U VITA 48.2 form factor.

Challenges ... ?

- What specific challenges does a chassis designer/manufacturer face when implementing VPX?
- Described I/O-related challenges last year
- This year thermal!

VPX: Thermal Challenges


• Mil-Aero requirements continue to:

- Add processing power,
- Add heat,
- Shrink package sizes, and
- Enter harsher environments.

How does a designer solve the everincreasing thermal challenges of COTS, but?

Chassis • Backplanes • Integrated Systems

Helping Our Customers Achieve Their Mission

Requirements Inflation

Simulations & Analysis

Prototyping

Requirements Inflation

Simulations & Analysis

Prototyping

Is the system really going to:

- Need as much cooling as requested?
- Be used in the requested environments?

Requirements Inflation

Simulations & Analysis

Prototyping

Can help with:

Risk reduction

Optimization

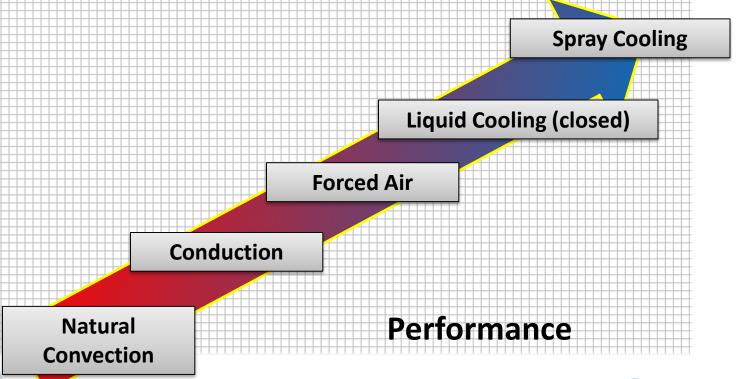
Exercise caution without having validated on similar systems!

Requirements Inflation

Simulations & Analysis

Prototyping

Provides further risk


reduction, but today's

schedules and budgets

don't always allow it.

What Are The Options?

Narrowing Down The Options

Cost & Performance always matter, but also

Payload

Weight

Environment

Infrastructure

Life

Complexity

Cooling Options Overview

- 1. Natural Convection
- 2. Conduction
- 3. Forced Air
- 4. Liquid
- 5. Spray
- 6. Hybrid Methods

Cooling Options: Natural Convection

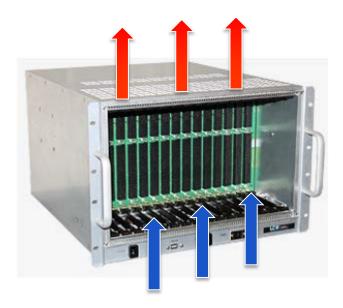
- + Inexpensive
- + Quick
- + Low Risk
- + No support infrastructure
- + Rugged

- Worst Performance

Cooling Options: Conduction

- + Inexpensive
- + Quick
- + Low Risk
- + Rugged

- ~ Minor support infrastructure
 - Somewhere to conduct heat

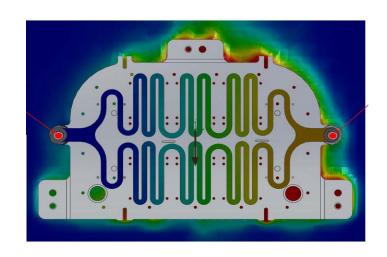

- Mediocre Performance

Cooling Options: Forced Air

- + Inexpensive
- + Quick
- + Low Risk
- + Decent Performance

- ~ Minor support infrastructure
 - Source of cool air

- Needs controlled environment

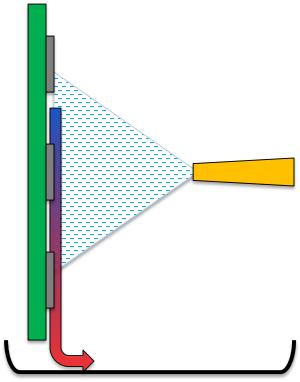


Cooling Options: Liquid

+ High Performance

- ~ Longer Development
- ~ Medium Risk

- Major support infrastructure
- Expensive



Cooling Options: Spray

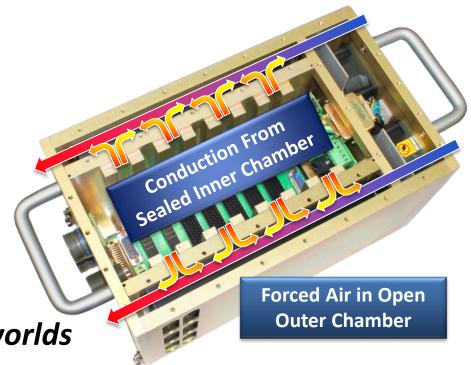
+ High Performance

- Long Development
- High Risk
- Major support infrastructure
- Expensive

Cooling Options for "COTS, but"

 The standard techniques will work for a COTS chassis, but *COTS*, but requires a little more creativity.

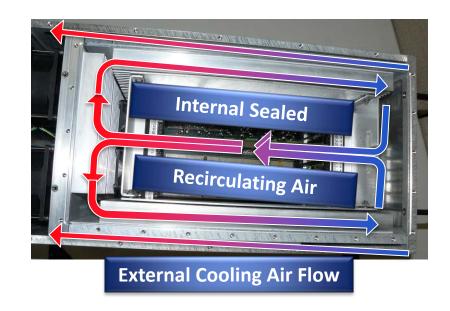
Hybrid methods! Bending the Rules!



Hybrid Methods: Forced Air/Conduction

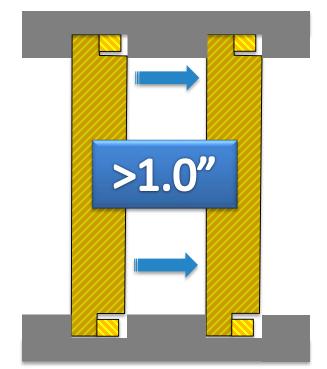
+ Higher Performance of Forced Air

+ Rugged Levels of Conduction


Combining the best of both worlds

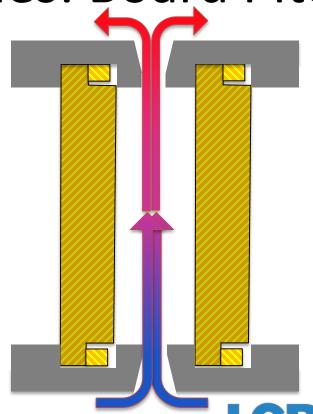
Hybrid Methods: Forced Air/Forced Air

+ Can use air-cooled COTs boards in a more rugged application



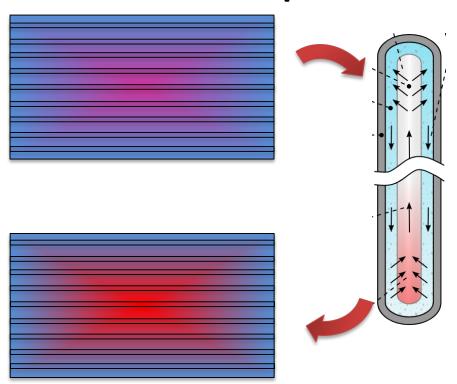
Bending the Rules: Board Pitch

+ Reduced Thermal Density



Bending the Rules: Board Pitch

- + Reduced Thermal Density
- + Improved Air Flow by Adding Forced Air



Helping Our Customers Achieve Their Mission

New Innovations: Heat Pipes

Can be combined with any method to improve overall effectiveness.

New Innovations: Alternate Materials

Composites?! What?! They're a thermal insulator!

When designed correctly, they can provide **400+%** thermal conductivity vs. aluminum with major weight savings.

Feeling the Heat?

With careful planning, a flexible outlook, and a little innovation ...

The *COTS*, but thermal challenges can be solved!

Chassis • Backplanes • Integrated Systems

Key LCR Embedded Contacts

Ken Brown, Principle Program Mgr.

484-636-3216

kbrown@lcrembedded.com

Janis Cortese, Marketing & Communications Mgr.

484-636-3206

jcortese@lcrembedded.com

Rick Nace, Engineering Mgr.

484-636-3212

rnace@lcrembedded.com

Questions?

